天堂中文最新版,果冻传媒在线观看视频,AA区一区二区三无码精片,欧美折磨另类系列sm

時代焦點網(wǎng) - 專業(yè)財經(jīng)新聞門戶
當前位置: 時代焦點網(wǎng) -> 外匯

人工智能改變芯片設計格局優(yōu)化過程變得愈加復雜

發(fā)布時間:2022-02-18 12:07   來源:IT之家   閱讀量:9774   

優(yōu)化功耗,性能和面積一直是芯片設計中的三個重要目標但即使是最好的設備和經(jīng)驗最豐富的工程團隊也無法保證優(yōu)化結(jié)果的穩(wěn)定性

人工智能改變芯片設計格局優(yōu)化過程變得愈加復雜

優(yōu)化 PPA 的過程正受到越來越多因素的制約:應用,IP 和其他組件的可用性不同,工程師對不同工具和方法的熟悉程度也不盡相同例如,同樣的設計目標既可以用更大的處理器實現(xiàn)更高性能,也可以用更小,更專業(yè)的處理元件更緊密的結(jié)合軟件來實現(xiàn)因此,即使在相同領域和相同的功率設計目標下,也會有許多不同的方法可以實現(xiàn)相同的目標并且方案優(yōu)劣的評價標準也是因領域和供應商的具體需求而異的

另外,由于對芯片安全性的需求不斷增加,優(yōu)化過程變得愈加復雜根據(jù)設備使用場景的重要性,其安全需求也各不相同安全級別的高低會影響芯片功率和性能的設計,進一步影響 IC 制造成本,上市時間,交貨時間和供應商的競爭力

為了縷清這些因素,EDA 供應商開始尋求人工智能和機器學習技術的幫助芯片供應商們正致力于將各種 AI 功能集成到工具流中根據(jù)麻省理工學院和得克薩斯大學奧斯汀分校的研究人員的論文,迄今為止該領域研究成果喜人研究人員表示,使用了深度強化學習算法的設備在某些任務上的表現(xiàn)已經(jīng)超過了人類

在六個小時的實驗中,研究人員通過對比使用強化學習的圖卷積神經(jīng)網(wǎng)絡方法,傳統(tǒng)的黑盒優(yōu)化方法,隨機搜索方法,具有五年經(jīng)驗的設計師這四者的成果得到結(jié)論:帶有遷移學習的強化學習方法可以取得更好的效果換言之,基于人工智能的工具可以使晶體管設計更加高效

如今,包括谷歌,英偉達,新思科技,Cadence,三星和西門子在內(nèi)的許多公司都已經(jīng)有在芯片設計中使用人工智能的計劃,其中部分公司甚至已經(jīng)在生產(chǎn)中進行這種嘗試。

人工智能改變芯片設計格局

直到今天,人們在設計芯片的過程中仍然在使用各種設計工具進行電路,邏輯門,布線,布局的仿真和驗證這么做是為了最大限度的減少可能的錯誤并且節(jié)約時間和成本,但這個過程相當乏味且耗時

設計芯片的流程有很多步驟:一般從確定芯片的規(guī)格和架構(gòu)開始,然后遵循上面流程圖中的各個步驟在設計完成后,設計文件將會被發(fā)送給工廠

當摩爾定律有效時,這個流程只需要根據(jù)實際情況進行微調(diào)即可但伴隨著制程紅利正在消失,F(xiàn)inFET 時代到來由于先進制程研發(fā)成本的增高,芯片制造商們不得不開始尋找新的方法來實現(xiàn) PPA 的優(yōu)化這種新變化顯著增加了芯片設計流程的復雜程度,并使得按期交付芯片愈加困難

設計一個 28nm 芯片的平均成本僅為 4000 萬美元,IBS 首席執(zhí)行官 Handel Jones 說,但現(xiàn)在設計一個 7nm 芯片的成本是 2.17 億美元,設計一個 5nm 芯片的成本則是 4.16 億美元,設計一個 3nm 芯片的成本甚至達到了 5.9 億美元。傳統(tǒng)SOC架構(gòu)帶來性能,功耗和帶寬的損耗的逐步升高,如何應對高性能5GSOC設計挑戰(zhàn)?展銳作為業(yè)界少數(shù)具備大型SOC芯片設計基礎能力的芯片廠家,從SOC架構(gòu),總線互聯(lián),物理實現(xiàn)等方向詳細介紹手機SOC設計方面的一些探索實例。

伴隨著芯片的迭代,晶體管數(shù)量已經(jīng)從幾千個增加到了數(shù)十億個這使得芯片上晶體管排布設計的異構(gòu)性越來越高,并且它們通常都會采用某種先進封裝工藝與之前只需要考慮如何將更多的晶體管排列在同一空間不同,現(xiàn)在芯片設計中還需要考慮到功率密度,熱預算需求,各種類型的機械和電氣應力,鄰近效應以及工作環(huán)境等復雜因素這使得設計過程耗時大大增加,同時也堆高了設計成本更糟糕的是,芯片制造商間的持續(xù)競爭迫使他們必須在更短時間內(nèi)實現(xiàn)芯片的迭代,否則就會在競爭中處于劣勢這導致了芯片制造商沒有試錯機會:一次設計失誤就代表著巨額損失

人工智能提高芯片開發(fā)效率

將人工智能引入到芯片設計的流程中有利于減少流程復雜性,減少錯誤并縮短開發(fā)周期。

例如,在芯片設計中布線過程的 90% 已經(jīng)實現(xiàn)了自動化,僅需要一位經(jīng)驗豐富的設計師完成最后 10% 的工作即可人工智能的參與可以將這最后 10% 的時間進一步縮短

這一切都是為了效率,Rambus 的研究員 Steven Woo 說,本質(zhì)上不論是人類設計師還是人工智能,其目的都是為了實現(xiàn)芯片優(yōu)化,但人工智能顯然在這一過程中更有效率我們會對算法模型進行預訓練以讓其更好的工作由于引入了強化學習算法,伴隨著時間推移基于人工智能的設計工具會變得越來越強大假以時日它將能夠向設計人員提供幾乎無錯誤的解決方案,這種方案優(yōu)化 PPA 的效率會比傳統(tǒng)方案要高得多此外,同樣由于效率的原因,芯片之間數(shù)據(jù)交換的速度也非常重要,因為 AI 需要快速訪問大量數(shù)據(jù)

許多人都支持 Steven Woo 的這一觀點西門子 IC 設計部門工程總監(jiān)約翰.史納比表示:人工智能將使得芯片設計流程進一步自動化,尤其是在芯片布局的設計過程中實踐已經(jīng)證明,在模擬電路中采用機器學習方案可以提高生產(chǎn)力在布局設計上,AI 可以用于生成 FinFET 節(jié)點中的最佳器件布局建議,以最大程度的減少互連寄生效應當芯片設計涉及加速度計和陀螺儀等微機電系統(tǒng)時,AI 能夠參與參數(shù)化的設計流程,以與人類合作設計 IC 和 MEMS 器件這將使得設計人員能夠更快完成 MEMS,IC 的軟硬件集成,使設計工作變得更加輕松

人工智能如何學習。

AI智能的基礎是它可以在短時間內(nèi)進行大量的識別和匹配工作,但遺憾的是 AI 并不能像人類一樣學習知識事實上,人工智能獲取知識的方式和人類有著本質(zhì)的不同一般來講,在算法應用之前需要將包含了大量數(shù)據(jù)的訓練集或輸入到算法初始模型中進行訓練在經(jīng)過長時間訓練之后,算法才能算得上擁有了智能

此外,人工智能還可利用強化學習方法來指導訓練結(jié)果RL 是一種機器學習技術,可以為 AI 的學習過程加入獎懲機制

在一個引入了獎懲機制模型的人工智能算法中,AI 的學習總是從初始狀態(tài)開始,并會輸出一些隨機結(jié)果然后設計師會對該結(jié)果做出判斷,當該結(jié)果被接受時,將視為對模型進行了獎勵,模型會繼續(xù)向著這個趨勢進行優(yōu)化相反的,當該結(jié)果被設計師拒絕時,將視為對該模型的懲罰模型會調(diào)整策略方向無論是設計師拒絕還是接受該結(jié)果,算法模型都會進入在調(diào)整后進行下一次迭代,并輸出新的結(jié)果以讓設計師接受或拒絕因此伴隨著 RL 學習過程的持續(xù)進行,人工智能算法將會變得越來越完善

西門子工業(yè)軟件高級副總裁兼總經(jīng)理 Ravi Subramanian 為機器學習進一步做了解釋:機器學習是人工智能的一個子集,指的是機器無需外部編程實現(xiàn)自我進化的過程傳統(tǒng)設備的運行規(guī)則遵循計算機語言中 if—then—else 語句的‘二極管’邏輯和線性順序但機器學習方法能夠使設備不斷從自身采集到的數(shù)據(jù)中獲得反饋,從而指導設備下一步的行動

Subramanian 表示,要讓 AI 進行學習,需要三個前提條件:

其一是需要一個數(shù)據(jù)集,即一個包含了大量數(shù)據(jù)的庫數(shù)據(jù)可以是 RTLIP,GDSII,C 語言或 SPICE 表格等多種形式

其二是需要一個算法模型這個模型使得 AI 系統(tǒng)能夠完成觀測,學習,反饋等任務基于這個前提使用了人工智能算法的設備才能根據(jù)每一次結(jié)果的輸出動態(tài)調(diào)節(jié)自身策略,而不是和傳統(tǒng)設備一樣僅根據(jù)輸入的程序運行

其三是需要一個目標函數(shù)并且設計一個圍繞著這個目標函數(shù)的獎懲機制,以完成強化學習過程 編者注:目標函數(shù)是指一個規(guī)定最優(yōu)解定義的函數(shù)每次訓練完成后,將會通過該函數(shù)輸出一個返回值,一般稱作 τ,可以看做是算法每次考試后的分數(shù)

人工智能本身并不會做決定,他解釋說,谷歌人工智能研究負責人 Francois Chollet 的說法很準確,他將人工智能定義為系統(tǒng)對數(shù)據(jù)進行分析后應用在陌生場景中的能力。

汽車可以通過衡量每加侖油能行駛的里程或者每次充電后的最大行駛里程來衡量其續(xù)航優(yōu)劣但人工智能系統(tǒng)不同,每個人工智能系統(tǒng)的設計都是獨一無二的,設計系統(tǒng)的工具也是各不相同的但整個芯片行業(yè)都報告基于人工智能的芯片設計工具提高了生產(chǎn)力

例如,谷歌將人工智能應用于芯片布圖規(guī)劃,并發(fā)現(xiàn)他們可以在不到六個小時的時間里完成從前工程師動輒需要數(shù)月的工作無論是人類還是人工智能,兩者都可以通過 PPA 優(yōu)化得到滿足制造標準的芯片設計結(jié)果,但在生產(chǎn)流程中引入了人工智能的企業(yè)生產(chǎn)效率顯然更高

將人工智能應用于芯片設計過程肯定會提高芯片性能,Cadence 數(shù)字與簽核集團產(chǎn)品管理組總監(jiān) Rod Metcalfe 說例如,在設計過程中使用了人工智能的 5nm 移動 CPU 可以提高 14% 的性能,7% 的耗散功率和 5% 的晶體管密度,這對于芯片設計很重要

這些改進在其他應用中也得到了體現(xiàn)Synopsys 人工智能解決方案高級總監(jiān) Stelios Diamantidis 表示:使用基于 AI 的設計技術,我們的客戶表示他們能夠與傳統(tǒng)設計方法相比降低 25% 的功耗,這種提升是驚人的

AI 在芯片設計領域的未來

對大多數(shù)人而言,難以想象將 10 億個晶體管集成到一顆芯片中但根據(jù) 2021 年 6 月新思科技的報告,他們已經(jīng)制造出了一種含有 1.2 萬億個晶體管,400000 個 AI 內(nèi)核,面積為 46225mm2 的芯片這是使用傳統(tǒng)工具的人類設計師無論如何也達不到的技術高度

Cambrian AI Research 創(chuàng)始人兼首席分析師 Karl Freund 表示:在芯片設計流程中引入人工智能來提高效率現(xiàn)在已是大勢所趨,至少對主要芯片供應商而言是這樣的像 Synopsys DSO.AI 這樣的系統(tǒng)正在為公司節(jié)省時間和金錢,并生產(chǎn)出功耗更低,性能更高,面積更小的芯片現(xiàn)在,業(yè)界正將注意力轉(zhuǎn)向優(yōu)化物理設計之外的下一步,例如系統(tǒng),軟件算法的優(yōu)化和設計驗證整個行業(yè)都在從這些創(chuàng)新中受益,消費者也將能用到性能更強勁,功耗更低,更便宜的芯片

所有主要的 EDA 公司都在致力于將 AI 功能加入到他們的芯片設計流程中并且,人工智能不僅可以幫助他們將更多東西塞進更小的空間里,還可以幫助他們將更多東西塞進更大的空間里

Cerebras Systems 的第二代芯片采用 7nm 工藝開發(fā),包含 2.6 萬億個晶體管和 850,000 個 AI 內(nèi)核這是目前世界上由人工智能設計的最大的芯片,它和一個盤子的大小相當相比之下,世界上最大的 GPU 也僅有 540 億個晶體管Cerebras 的芯片有 40 GB 片上內(nèi)存來支持 AI 計算要設計這種體量的芯片,必須使用基于人工智能技術的芯片設計工具

未來,在 PPA 問題之外,人工智能還可以在集成芯片安全性等領域提供幫助。

西門子的 Subramanian 指出,人工智能已經(jīng)在至少四個領域得到了應用:1,創(chuàng)建一種設計和驗證 IC 的新方法,2,減少設計過程中的錯誤并既減少設計時間,3,構(gòu)建一個基于機器學習原理的新計算架構(gòu),4,構(gòu)建基于人工智能算法的芯片。

結(jié)語

當問題能夠被人工智能理解的方式明確定義時,人工智能在設計中的效果最好因此,IC 設計者必須先考慮是否存在與人工智能適應,學習,概括能力相關的問題,設計好目標函數(shù)這樣人工智能才能夠準確的將這些知識 / 規(guī)則運用到不熟悉的場景中

了解是否存在非常適合人工智能的問題是第一步,也是最重要的一步,Subramanian 說,這也可能是有人工智能參與的芯片設計流程中最關鍵的一環(huán)。

到目前為止,已經(jīng)有很多領域顯示出人工智能的優(yōu)勢,并且無疑未來人工智能會在更多領域中顯現(xiàn)出這種優(yōu)勢。為了滿足越來越多的應用需求,手機SOC的系統(tǒng)也越來越龐大。

曾經(jīng)人們對于 AI 可能會曇花一現(xiàn)的顧慮已經(jīng)消失如今站在面向未來的交叉路口上,人們正憧憬的眺望一個新問題此時在人們的腦中回蕩:人工智能還能夠做什么這個問題的答案或許就是交叉路口上應該豎起的路標

。

聲明:本網(wǎng)轉(zhuǎn)發(fā)此文章,旨在為讀者提供更多信息資訊,所涉內(nèi)容不構(gòu)成投資、消費建議。文章事實如有疑問,請與有關方核實,文章觀點非本網(wǎng)觀點,僅供讀者參考。